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1. Introduction

This paper concerns Hamiltonian and non-Hamilitonian perturbations of
integrable two degree of freedom Hamiltonian systems which contain homo-
clinic and periodic orbits. Our main example concerns perturbations of the
uncoupled system consisting of the simple pendulum and the harmonic oscilla-
tor. We show that small coupling perturbations with, possibly, the addition
of positive and negative damping breaks the integrability by introducing
horseshoes into the dynamics.

We begin with an unperturbed n + 1 degree of freedom Hamiltonian in
canonical coordinates q = (q], sy M), P=(pys +ees pn), X, y of the
form

H(q,psx,y) = F(q,p) + G(x,y) (1.1)

Starting in §3, we will assume n = 1, but for some of the development n
can be arbitrary. Allowing x and y to be multidimensional will be the
subject of another publication.

We shall assume that G admits action-angle variables; i.e. there is
a canonical change of coordinates to (6,1) such that 6 1is 2n periodic,
I >0 and G becomes a function of I alone; we write G(I) for this

function and assume that

G(0) = 0, @(I) =G'(I) >0 for I>0 (1.2)

Note that (1.2) implies the existence of G“.

The equations of motion are

i oF . 3F
L S T S (1.3)
§ =aq(1), 1=0 (1.4)
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We shall assume that the system (1.3) contains a homoclinic orbit (q(t - to),
plt - to)) joining a saddle point (qo, po) to itself. Of course
(1.4) contains the 2m-periodic orbits 6(t) = 8y * tQ(IO), I(t) = IO'
Thus, for the system (1.3)-(1.4), we have orbits which are the products
of the homoclinic orbits and the periodic orbits. (See Figure 1.) [The

case in which F has a heteroclinic orbit may be treated by similar methods.]

(@lt~ty),B(t-ty))

X
(ag+Pg)

F-system G-system

Figure 1. The unperturbed system.

Our principal example in this paper is the pendulum-oscillator Hamil-
tonian
2
HO(6,vax,y) = 12- - cos ¢ + %(yz + wzxz), (1.5)
which takes the form (1.1). Action-angle variables for the oscillator are

X =‘J§L sin 6, y=uw /gl cos 8, so that
w w

H(6,v,8,1) = Flo,v) + G(1),
where F(o,v) = %-vz - COS ¢ (1.6)
and G(I) = wl,

The Hamiltonian system associated with F possesses the two homoclinic

orbits




o(t)
v(t)

+2 arctan[sinh(t - tO)L
(1.7)

+2 sech(t - to).

We deal with Hamiltonian perturbations of (1.1) in Sections 2, 3 and
4. We assume that our perturbed Hamiltonian depends on a small parameter

€ 1in the form

HE(q.p.6,1) = F(a,p) + G(I) + eH'(q,p,6,1), (1.8)

where H] is smooth and 2m periodic in 6. We shall show that a Poincaré
map associated with H® contains Smale horseshoes on each energy surface
for € small) and H] satisfying certain conditions.

The equations of motion corresponding to H® are

1

i _ 9F W . _ _ 3F _ _sH , . _
q = api +€ap.i ] p.i a_q.l*" € aqi, i ], n’
(1.9)
6 = Q1) + ¢ éﬂl I=-¢ éﬂl
3l °? 96 °

Our method for finding horseshoes involves the Melnikov function tech-
nique that has been used in Melnikov [1963], Arnold [1964], Holmes [1979,
1980], Holmes and Marsden [1981] and Greenspan and Holmes [1981] to show
the existence of transverse intersections of stable and unstable manifolds
and hence the existence of horseshoes. The Melnikov technique is used after
the system has been reduced to a non-autonomous single degree of freedom
system (as in Whittaker [1959] Ch. 12, and Birkhoff [1966], Ch. VI, §3).

In particular, in Section 4 we prove that the pendulum-oscillator (1.6)
develops a horseshoe on each energy surface near the value H =1, when

it is perturbed using the coupling term

BRI LR THRY




H (0, ,x,7) = ;-(x -9)? (1.10)

Churchill [1980] suggested the possibility of this approach but did not

examine any specific examples. Section 5 concerns the more delicate case
in which (1.4) is given an additional non-Hamiltonian perturbation. We
prove that at least one of the horseshoes persists under this perturba-
tion provided there is a suitable energy transfer mechanism. In Section 6
we apply this theory to the pendulum oscillator example once more.

In another paper (Holmes and Marsden [1981b]) we use these methods
to address the question of nearly integrable multidegree of freedom systems
and Arnold diffusion (cf. Arnold [1964]). Holmes and Marsden [1981lc] treats
Hamiltonian systems with symmetry in which (part of) the phase space is
the coadjoint orbit of a Lie group. This provides a natural framework in
which to consider non-integrable pertrubations of rigid bodies.

In many examples of physical interest, such as weakly nonlinear prob-
lems, the unperturbed system H = F(p,q) + G(I) does not possess a homo-
clinic orbit, but some averaged system, after truncation, does have homo-
clinic orbits (cf McGeehee and Meyer [1974]). In such cases the Melnikov
function, computed with the use of second order terms normally neglected
in averaging, is typically exponentially small and conclusions on the in-
tersections of manifolds do not immediately follow without a careful study
of the errors. The elastic pendulum in the limit of a very stiff rod, with

linearized frequency w/e and Hamiltonian

2
H = !2— - cos ¢ + ul -ej%r sin[%] cos ¢, (1.11)

also falls into this class. The study of such systems is planned
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for a future publication. The problems of the
motion of four point vortices treated by Ziglin [1980] and the motion of
charged particles in the earth's magnetic field (see Braun [1981]) possess
related difficulties.

We expect that the methods developed here will be applicable to a num-
ber of Hamiltonian systems exhibiting complex dynamics. Two examples that
seem to involve homoclinic phenomena are the Henon-Heiles system (see
Churchill, Pecelli and Rod [1979]) and the mixmaster model in cosmology
(Barrow [1981]). The results in &5 should also enable one to deal with
nearby systems with forcing and dissipative terms.

For other papers in which horseshoes are found in two dimensional
mappings by very different techniques, see Devaney and Nitecki [1979] and

Tresser, Coullet and Arnoedo [1979].

Acknowledgements. A number of helpful comments were kindly supplied

by Allan Kaufman, David Rod, and Alan Weinstein.
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2. The Reduction Method

We now recall how to reduce the n+1 degree of freedom system (1.9)

! to an n degree of freedom non-autonomous system. This is a special case
of the general reduction procedure by which a Hamiltonian system with
symmetry is reduced to another Hamiltonian system with fewer degrees of
freedom. The standard reference is Whittaker [1959, Ch. 12]; see also
Birkhoff [1966] and Churchill [1980]. The case of concern in this paper
is the symmetry of time translations,with energy being the corresponding
conserved quantity. The procedure is also a special case of that of Marsden
and Weinstein [1974] in the context of time-dependent mechanics, as in
Abraham and Marsden [1978, §5.1].

Energy is conserved for (1.9), so we consider the equation
€
H (q,p,0,I) = h. (2.1)

3HE 31!
Now =+ = Q(I) + ¢ =7 On any compact subset of (q,p,8,I) space not

ol
£
containing I = 0, we can choose ¢ small enough so that g;f' > 0, since
2(I) >0 for I # 0, by assumption. Thus, in such a region, we can solve

(2.1) for 1 to obtain

I=L%(q,p,6,h) (2.2)

g,
e e

Now define L0 and L] by writing

T SR A e g
s §

L%(q,p.0,h) = Lo(q,p,h) + eL](q,p,e,h)+ 0(82). (2.3)

-
oS

R

2.1 Proposition. We have

L%q.psh) = 67 (h - F(q,p)) (2.4)

)

O L s JO100 4. 4
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» 8
] H (q,0,8, L2(a,p,h))
Fv m L (qsp’e$h) = - s L‘Ej L2 4 (2-5)
= (L™ (q,p,h))
;
4
[ Proof. Substituting (2.2) into (2.1) gives
: F(a.p) + 6(L0 + el + 0(e?)) + e’ (q,p,0,L0 + €' + 0(e?))= n
i 1
3
_ fe. [F(a.p) *+ 6(L%) - 0]+ 2O (el + e (a,p,0.LY = 0(ed)
The eo and e] terms of this expression give (2.4) and (2.5). W
s Having passed to the level set H* = h and thereby eliminated I, we
now eliminate thevariable conjugate to H, namely t. (In reduction, an
even number of variables is always eliminated). Since Q(I) >0 and H®
- is not explicitly t-dependent, and 6 1is (for small ) an increasing func-
tion of t, we can eliminate t by inverting 6 = 6(t) and expressing
. .
q and p as functions of 6. We write q1 = dq’/de and p% = dpi/de,
i=1, ..., n~1 so that
it LAl e/ aHe
- 8 p'l/l ox !
and (2.6)
-1 £ €
' P__ 3H aH
K S B SR 5
? 0 3q -
‘ff However, implicit differentiation of (2.1) gives
2 € € €
> 3Hi+3H BL.=07
g i ol 1
e 3q dq
‘,
o
and c c . (2.7)
3H™ |, 3H- 3L~ | 0
_ api 91 9p;

% ke

Vi
¥

-
<
1
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Substituting (2.7) into (2.6) we get
iv oLt
= = AJp !
op;
(2.8)
€
and p% = QLT '
aq
Using (2.3), this becomes
. 0 1
i oL oL 2
= - — - e+ 0(%)
api api 4
(2.9)
. 0 1
s . 3
' ‘ pi = -?-I:—.i- + e.—LT + 0(52) .
3q 9q
Since L0 depends only on (q,p), but L] depends on q,p and 6, the

= system (2.9) has the form of a 2n-periodically perturbed n degree of
freedom Hamiltonian system. For n =1, (2.9) becomes a forced oscillator

equation. This is exactly the situation which occurs in our pendulum-oscilla-

tor problem,.

W pgn
[ LN

L

L e
-
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3. Melnikov's Method: The Existence of Horseshoes

For n =1, the system (2.9) is in the form analyzed by Melnikov
[1963], Holmes [1979, 1980] and Greenspan and Holmes [1981]. [For (6,I)
vectorial or n > 2, analogous technique were developed by Arnold [1964]
and Holmes and Marsden [1981b] and will be the concern of a subsequent
paper. ]

For ¢ = 0, the system (2.9) reduces to (1.2) and thus also contains
a homoclinic orbit. The Melnikov method involves integration of the
Poisson bracket {LO,L]} around the homocliinic orbit of the unperturbed
system. Let us first use (2.4) and (2.5) to express {LO,L] } in terms

of (F.H'Y.

- 3.1 Proposition. Holding 6 and h fixed, we have

WOy « e (r i (3.1)
(L]

Proof. Using (2.4), we have

0

% 0
i Ee- @y —3—'}} and 2 = @[~ 2F
L 3q aq i i
}T! while (2.5) gives
e
;‘ oL S oH! + o] BLO} + ! Hlge QLS
! a0 alth) lag’ Mgl @uDP T e
and BL] = 1 QH] BH] aLo] + 1 H]Ql .a_l-_(i
R ) N T S

! .
v

5% 9P Q(LU;
,'~

: k

»,

1Y

!
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Thus,

o’ a%all _eh [oF [BH] RETL S B aLOI

o (oh' ol al 1 o, al
api 3q1 ol aq'l Q(LU) aq1

[0 [SF s oF aH‘].
3

oL [aq? P P4 5

But (G'])' = 1/Q(L0) and so we obtain (3.1).1

The cancellations that occur to yield (3.1) reflect the general fact
that the Poisson brackets before and after reduction correspond. Similarly,
if K 1is a function of (q,p) we obtain the formula

:
o1 el d [ '
o'y = - Ll {Q ]{K,F} (3.2)

Thus, if K 1is a first integral for F, then (3.2) becomes

WLt = - L GH" (3.3)

In particular, in the multidegree of freedom case in which all but the
first of the n variables (q,p) are in action angle form so that

{p,» F} =0, k=2, ..., n thenwith K= P> (3.2b) becomes

(P L' = - L p, ]

a . (3.4)

-
.
~~~~~~~~
"""""""
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In connection with the identities (3.1)-(3.4) the following observa-
tion is useful. Along an orbit for the unperturbed system, F 1is con-

stant, so if h > F, L0 will not vanish and —le;- will be a finite
Q(L

constant. Thus, on such an orbit, {LO,L]} will differ only by a multi-
plicative constant from {F,H]}.
We are now ready to state our main result for Hamiltonian perturba-

tions in case n = 1,

3.2 Theorem. Consider a two degree of freedom Hamiltonian system of the

form

HE(q.p, 2,7) = F(qup) + G(I) + eH'(q,p,2,3) (3.5) !

and assume that F contains a homoclinic orbit (q(t - to), p(t - ty))

connecting a hyperbolic saddle to itself (or to another hyperbolic saddle

point). Suppose Q(I) = G'(I) >0 for I > 0. Let h] F(gq,p) be the
O=6(h-ny) be

energy of the homoclinic orbit and let h > hy and 2

constants. Let {F,H]}(t - tgy) denote the Poisson bracket of F(q,p) and

H](q,p}- co . evaluated at q(t - t;) and p(t - ty). Define
= 1
M(ty) = r {FH It - t5) dt, (3.6)

-00

and assume that M(to) has simple zeros and maxima and minima of 0(1).

Then for € > 0 sufficiently small the Hamiltonian system corresponding

to (3.5) has a Smale horseshoe in its dynamics on the energy surface

HE = h.
This result follows from our previous development (the reduction and

Proposition 3.1) and the Melnikov theory given in the references at the
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beginning of this section. Equation (3.6) can also be obtained from the

evolution equation for F along the unperturbed orbit

? = {F,Hl} > (3'7)

cf. Arnold [1964].

For our analysis in &85 we shall need some facts about the construc-
tructicn of the horseshoe, so we collect them here. First we pick an
energy surface HE = h > h1 and consider the Poincaré map on :Zeo > zeo
(which we just denote Pe below) associated witn the periodically per-
turbed systemi(2.9). Here I = {(q,p,€}|8 = 8y € {0,27]} is a global
cross section for the flow of (2.9). By hypothesis, for ¢ =20 Pe has
an invariant manifold filled with a continuous family of (nontraverse)
homoclinic orbits. If M(to) has simple zeros then this manifold breaks
into a countable set of homoclinic orbits: the generic case found in
advanced classical mechanics texts (cf Arnold and Avez [1967], Abraham
and Marsden [1978]); see Figure 2a. For more details on homoclinic orbits
of maps see Moser [1973] cr Newhouse [1980]. Here we merely note that
the Smale-Birkhoff homoclinic theorem asserts the existence, near any
transverse homoclinic point, of a zero dimensional invariant Cantor set
A on which some power of the map, P:, is hemeomorphic tc a shift on two
cymbols. Since PZIA possesses a dense orbit, it follows (Moser [1973])
thet (3.5) possesses no analytic second integral.

To construct the hor;?oe one takes a small rectangle, R, partially
bounded by pieces of the stable and unctable manifolds and containing a

transverse homoclinic point. Integersll, 22 can be chosen such that the

L -2
fcrward and backward images P 1(R) . PE 2(R) lie in a neighborhood U

e N A
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of the saddle point, x. The linearized map DPE(x) can then be used to
approximate the motions in U and it can be shown that there are an integer
N < » and two disjoint 'horizontal' strips Hi C ngR) = B whose images
under P: are disjoint 'vertical' strips V; CB (Figure 2). The map

P::Hi > Vi is the horseshoe,

wo(x)

T

(a) The perturbed homoclinic

orbit
W' (x)

Yy )

1: X

W X A A H

= £ 2

i &

L2l X2L | Hy

: R WS (x)
B

(b) Horizontal and vertical strips

Figure 2.




To obtain estimates necessary to prove hyperbolicity of A, one needs
to find certain sector bundles which are mapped into themselves by DP:. In
our case this implies that the choice of N is related to e, the pertur-
bation strength,sinece the angle between the tangent vectors of the manifold
at a (transverse) homoclinic point is 0(e) (M(to) measures the 0(e) com-
ponent of the distance between the perturbed manifolds). In Appendix B we
show that N ~ en(1/e). Thus, for each e > 0 sufficiently small and each
h > h], there is an invariant set Ah near every transverse homoclinic
point in each energy surface HE =h (cf. Figure 4, below). However as ¢
gets smaller, N must be increased. This dependence of N on ¢ plays an

important role in our discussions of dissipative perturbations on §5.
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4. Example: The Coupled Pendulum-Oscillator

We now apply Theorem 3.2 to the Hamiltonian (1.4) with W given by
(1.10), and the homoclinic orbit for F given by (1.7). In terms of the

variables (¢,v,8,I), we have

2
F(¢,v) = % - cos ¢ (4.1)
1 1 21 2
and H (¢3V,e,1) = 5[\/% sin 0 - ¢]- (4.2)
Thus
(FH} = -vo +J%— v sin o ¢ (4.3)

The energy of the homoclinic orbit (1.7) is hy = 1, sowe let h>1 and

0

let ¢ =—(h-1). Thus (3.6) gives

oo

j {4 sech(t - to)arctan[sinh(t - to)]

€ |—

M(tg) =
+ 2 2 sech(t - tg) sin(tw)} dt .

The first term is odd and so vanishes, leaving

©

J 2v/2 2 = 1) sech(t - t,) sin(tw) dt » (4.4)

1+

M(to) =
This is evaluated by the method of residues as in Holmes [1979], yielding

M(to) = +2m/2(h - 1) sech[ﬂ%] sin wto . (4.5)

Since M(to) has simple zeros and is independent of ¢ we conclude that,

for ¢ > 0 sufficiently small, the conditions of Theorem 3.2 are satisfied

and we have horseshoes in the Poincare map associated with the pendulum-
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oscillator oneach energy surface h > 1, where

2 2
HE = !%-- cos ¢ + ol + %[ %% sin @ - ¢] = h.

Thus, we have proved:

4.1 Theorem. The Hamiltonian system with energy function
% 1,2, 22, . ¢ 2
H(9,vsx,y) = 5 - cos ¢ + 5 (" + wx") + 5 (x - ¢)

has horseshoes in its dynamics on each energy surface H > 1, for e suffi-

ciently small, and hence possesses no analytic second integral.
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5. Non-Hamiltonian Perturbations

We now wish to consider perturbations under which the total energy H
is not conserved. In many physical problems one system produces energy which
is subsequently absorbed by a second system, so that the coupled systems
can achieve a 'dynamic equilibrium' in which (in a suitably time-averaged
sense) energy is preserved. This often manifests itself in the presence of
negative damping in one system and positive damping in the other. We will
take an integrable Hamiltonian system which possesses continuous families of
non-transverse homoclinic orbits, add a Hamiltonian perturbation He, as
before, which breaks these manifolds to give transverse homoclinic orbits,
and then add dissipative effects which cause a net drift in the energy H
for perturbed orbits lying near the homoclinic manifold. Under suitable
hypotheses, such dissipative perturbations can leave invariant isolated pieces
of the continuous family Ah of horseshoes discussed in Section 3. For
simplicity we shall restrict our discussion to two degree of freedom systems ’
(n=1).

The Hamiltonian system (1.9) is modified to include dissipative terms

as follows:

1 \

oF oH
q 3 £ T + eY]f]

- _3£ - BH] + evy.f
: oH! .
6 = Q(I) + e FJ7 *+ €49
- 3!
I = -¢ Ty + 85292 }

where F, @ =G' and H] are as in the previous sections and fi' 9;

are functions of (q,p,I,8), 2m periodic in 6. Specific hypotheses on
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fi’ 9 and on the dissipation parameters Yo ai will be stated subsequently.
The energy function H = H® = F(q,p) + G(I) + eH](q,p,I,e) is no ionger
conserved, and our earlier equation (2.1) which was used to eliminate I is

now replaced by

i = LI 3 3HE 3HE
= oF 3F 2
i e[Y] Sty o, 9(1)5292}+ 0(e?) (5.2)
- 2
= ¢h(p,q,I) + 0(e")

Note that when vy, = 6i = 0, (5.2) gives H =0 and (5.1) becomes (1.9) with
conservation of energy.

The five equations (5.1-2) are redundant and we can eliminate the
variable I by regarding I as a function of p, q, 8 and H; i.e. by
solving HE = H implicitly for 1 but remembering that H 1is a variable

with its own evolution equation (5.2). From (2.2-5) we have

1= 1%q,p.H) + eL'(q,p,8,H) + 0(e?) (5.3)
where
0 _ -1
L” = F (H - F(a,p)), (5.4)
and
1 0
L] = 'H (q’gse,l- iggpiH)) . (5.5)
Q(L"(q,p,H))
As before, we have
q' = d/6, p' = p/é, (5.6)

and from the implicit equation He(q,P.e,LE) = H we obtain

R L A
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M, oHE aL®

3p 3T ap = 0, etc.,

so that -

Q=755+ ek

becomes

- )

1 1
-1 [3F 9H_ 3H
" [ap * E( 3 Y1f1))/[9(1) * 6[8 T7 619‘))

ol ol onh o al Gk o2
p la p Q p 9 ‘

A similar computation for p' and use of (5.2) yields the three dimensional

system
cooal et onhoalSEy ) \
4 3p [ap Q dp  Q J +0(e%)
s 1 v, f 0 s.¢ ‘
L oL sl Yo'z A 918 2
o= s E[ TR e L O R b (5.7a,b,¢)
e ) 0 | .
% . _ oL _aL , Z
1 H ‘59[5292 aq M1t - S Yafy) * 0. /
:;; Equations (5.7a,b,c)constitute the system we now study, with the dependent
¥ ; variables g, p, H and the independent time-like variable 6. For v, = i

6§, = 0 (5.7) reduce to {2.9), as expected.

i

To deal conveniently with the slow variable H compared with the
fast variables (q,p) we use a slight modification of the usual averaging

theorem in which the 0(8) term in the right hand side of (5.7c) is re-

placed by its 6-average

VUL R I L R <
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0 0
= —-i"_—_-é.L_ F
eh = 69(5292 39 ¥, f = Yzfz), (5.8)

where an overbar denotes the time average 7% fg“ ( ) d6. The modified
averaging procedure is discussed in Appendix A. Its use is not essential,
but it makes calculations somewhat easier. Retaining the same notation

for the averaged variables, our reduced system is now (5.7a,b) plus

H' = eh(q,p.H) + 0(e?). (5.9)

Let § = (YT’YZ’GI’GZ) denote the dissipation coefficients in our
0
system. Also, let PE 5 = Ps?é deno(ta:e the Poincaré map associated with the

3

system (5.7a,b) ard (5.9). Thus, P 0 maps (an open subset of) R” to

€,6
IR3 and is given by advancing the 1n;ependent variable 8 by 2m, with
starting value eo.

Let us assume that the homoclinic orbit (q(8), p(e)) for F has
energy = h] and joins a hyperbolic saddle point (g, p) to itself. (The
case of a hetergclinic orbit is similag). Thus, for each value of H >

0

hy o, (q,p,H) 1is a fixed point fcr PO,O' Let CO,O denote this curve

of fixed points. Since we are assuming (q,p) 1is a hyperbolic fixed point

0
for F, c0 0 is a hyperbolic invariant manifold for POOO’ with H
restricted to an interval, say h] < H0 <H 5_H1. Since hyperbolic manifolds

are preserved under perturbation, we have:

5.1 Lemma. For & bounded and e sufficiently small, there are invariant

8 6
curves ceoc5 close to ¢, o for PEOS. Moreover, the stable and unstable
? e - e ’ e
manifolds of ceoé, denoted NS(CEOG) and w”(ceoa) are “¢" close" to those
of ¢4 o and each is two dimensional. (See Figure 3).

EATET RIS L e ORI L By
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Figure 3

Motice that if & = 0 then ¢ o is still a curve of fixed points by

conservation of energy and we recover the situation of §3. For & # 0,

% 8,
€48 ,6

conserved. However, they will stay on ceoé (until or if H 1leaves the inter-
s

& points on ¢ can "drift" under ijteration of P€ since energy is not

jﬁ val [HO’Hl]')
L For & = 0, suppose Theorem 3.1 is used to show that ws(c;%o) inter-
i | sects wu(cs%o) transversely. This persists for & sufficiently small, by

24 the stability of transversal intersections under perturbation. Because of
potential drift in the H variable, this alone does not permit us to con-
clude the existence of horseshoes for ¢ # 0. Rather, we must control K.

The crucial hypothesis that enables this to be done will be given next.
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>
Let N be an integer fixed so that (Peoo)N has a horseshoe, as

’ 8
described following Theorem 3.2. Thus, N is large enough so that (PEOO)N

maps 2 horizontal strips in B back around to two vertical strips in B
again, where B 1is a rectangle lying in a neighborhood U of the saddle-

point (Figure 2).

Let
oN/Q

o = ¢ J h dt, (5.10)
-mN/Q

2=

™
AH = ej
-nN

where h is given by (5.8) and h, @ are evaluated on the homoclinic orbit
(9(e), p(8)) at an energy value H. (Recall that Q 1is constant on this
orbit). From (5.9) we see that AH represents the approximate change in
energy in following a point starting near the homoclinic orbit for N iter-
ates; i.e. for a total 6-time 2nN. For N Tlarge but finite Pe,‘S maps
points 1in the horizontal strips in rectangle B in Figure 2 back to the
vertical strips in rectangle B after N iterates. Thus AH represents
the leading term in the energy change while going from R back to B. Of
course AH 1dis a function of F and depends on €, § and N. Strictly
speaking, (5.10) should be evaluated on trajectories just inside the homo-
clinic orbhit, but as we show in Appendix B, as ¢ > 0, N - = and the hori-
zontal and vertical strips Hi’ Vi C B must be taken closer and closer to the
homoclinic orbit. Thus, since we only need AH to leading order in what
follows, evaluation on the homoclinic orbit is sufficient.

Now we state our basic energy-transfer condition:

Condition (H). Assume thereisa value H. >1 of H at which AH given

by (5.10) changes sign transversely, i.e.

Edtadl 20 b e KRR 0..‘4‘ ‘v._vt‘*ﬂ"im IR S
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AH< 0 if H<H

C
AH >0 li H>HC’
and
d
aﬁ'(AH)l Z0.

H= Hc

Under this condition and ¢ sufficiently small, we have

5.2 Lemma. There is a smooth function H(q,p) defined on the rectangle B
e -~ -~

such that if (q,p) € B then (P€06)N(q,p,H(q,p)) has the form (q,p,

H(q.p)).

Proof. Since the exact energy change differs from (5.11) by 0(52), persis-
tence of transversality guarantees that condition (H) 1is also true for
the exact energy change for ¢ sufficiently small. For & = 0, the surface
H = constant = Hc is preserved by (PZ?O)N‘ For 6 # 0 the surface HC
is preserved and contracting to first order in ¢. By persistence of hyper-
bolic invariant manifolds, there is a nearby surface exactly invariant under
(Pz?é)"; this surface is the graph of H.B

Thus, we have identified a surface, say zc near H = Hc such that
(PZ?S)N maps I to I..

Now we wish to show that there is a horseshoe in this surface Tc By
the arguments in Holmes and Marsden [1981, Appendix A], we must check that
ws(cz?a) and wu(c:fé) continue to intersect transversally, for & # 0.
T To do this, we form the Melnikov function at energy value Hc for the
system (5.7) and (5.8).

If M(to) is given by (3.6), then, using Proposition 3.1, the Melnikov

function for (5.7a) and (5.7b) is given by

- e RRr -, e g AR Y
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© [ 0

0
1 10aL 3L
Ms(tg) = =7 Mty) + I_m a2 op Y2f2 - g f } dt.

Q

(Note that the 62f2 term cancels out). Thus, using (5.4}, we get

5.3 Lemma:
Mé(to) "2? [ﬁ(to) + J-w [Bp Y]f] - 39 Yzfz](t to) dé] (5.11)

We will assume that & 1is chosen such that M (to) continues to have simple

zeros.
p In Appendix B we discuss the relationship between N and €. As ¢

gets smaller, the number of iterates required of the Poincare map to guarantee

a horseshoe gets larger. It is shown that:

5.4 Lemma: We have

g (5.12)

N=L + 2¢a Rn{ )7
EMZHC5

where o and g are constants, L is a fixed integer and M(Hc) is the

supremum of M(to) over tg; (the dependence of M on HC is made explicit

in (5.12)).

This result applies to the case of i‘amiltonian perturbations (8§ = 0). When

PIPRATE
4 - P.. -

A .

§ # 0 there isan analogous result N = N(e,8) in which o = a(S) and M(HC)

T W
* "

is replaced by MG(HC). However, in our application we set ¢ = "5 to be

N 0(6“), so that €6 = e]+”§ << £ for € << 1 and theeffects of & in (5.12)

-
¥

can be ignored, cf. Appendix B.
From (5.11)we obtain a condition on the size of y; and v,; if M(to)

has simple zeros and oscillates with an amplitude M(HC), then (5.11) gives

us conditions of the form

vi
2
3
?
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< M(H)
e < M (5.13)

CoYp < M(HC)

which must be satisfied for M6 to still have simple zeros.

We summarize our findings as follows:

5.5 Theorem. Suppose that N, HC and § can be chosen so that conditions
0
(H), (5.12) and (5.13) all hold. Then some iterate (PE0 N of the Poincaré

5)
map of the reduced system (5.7) has, for ¢ sufficiently small, a horseshoe

in its dynamics; the horseshoe 1ies near the homoclinic orbit in the (q,p)

variables and near the (non-invariant) energy surface H = Hc.

R e
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6. Example: The Oscillator-Pendulum with Positive and Negative Damping

We now wish to show that for ¢ sufficiently small the pendulum-oscilla-

tor system considered in §4,

o =v, V=-sing +e(x-4¢),

w?x + e(o - x)s

VEy,y
continues to have a horseshoe when dissipation is included. Specifically,

we add negative damping (-8) to the oscillator so that it drives the pendulum,

which now has positive damping (y):

d=v,
v =-sin¢ +e(x-¢)-eyv.
. (6.1)
x=y,
9=-w2x+e(¢-x)+€6y.
In action-angle variables, (6.1) becomes
b=v .
v = -sin ¢ + e[ /%} sin 6 - ¢] - €YV ,
(6.2)
§ =y + e[ /gl sin 6 - ¢J siné _ s sin 8 cos @,
w V21w
I = -e[ '%; sin o - ¢]/7TB' cos 8 + €521 cosZe .

Note that & > 0 represents damping while & > 0 represents negative damping

(energy production). The energy evolution equation (5.2) is

H=eiy? - YVZ),

ar 2
f)- (25wl cos

' 0 - yv0) + 0(e?), - (6.3)
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where the dependent variable is now 6. Using
.0 _ 1 2
I=1017(¢,v,H) = = (H - (v/2 - cos 9)), (6.4)
from (2.4), (6.3) becomes
Hl = g [(S(l" + 2 '| + 2 2
= =  + cos ¢ ~ v/2)( cos 26) - yv©] + 0(e°). (6.5)

Although we do not need them explicitly in the calculations to follow, we also

give the reduced evolution equations for ¢, v:

. . 2
o' = 1 v + v ¢ fl? 6 _sin® § sin 8 cos 6 +-O(€2) 7
w 1 w/2R v
. 2 .
V' =1 [} sin ¢ + E-{sin $ {518 o ._¢® Sli ® . y sin 6 cos e)+
w wy/2A

+ (V2R sin © - wo - yv))] + 0(32), (6.6a,b)

where A =H + cos ¢ - v2/2. Equations (6.5a,b) and (6.5) correspond to
(5.7a,b,c).

We now average (6.5). The transformation (4¢,v,H) + (¢,v,H) is given
by (¢,v,H) = (¢,v,H + eu(d,v,H,8)), where

ou gg_[yJ + %%.[- §iﬂ_24 = %—(H + cos ¢ - v2/2) cos 26,

gt~ 9 (b w
(6.7)
From (A.8). This is satisfied if we take
§ 2 .
U=z (H+ cos ¢ ~ v/2) sin 6, (6.8)
and then (6.5) becomes, dropping the overbars,
H' = E[g(H + cos ¢ - v&/2) - w2] + 0(e?) . (6.9)

I RN
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We now check condition (H). Inserting the unperturbed solution (17) we

have H + cos ¢(t) - v(t)2/2 =H-1 and (6.9) becomes

' - E _ _ 218 2
W= [a(n 1) - 4y sech [w]] +0(?).
or B o= e[8(H - 1) - 4y sech?t] + 0(c2). (6.10)
mN/w 2
Hence AH = eJ [S(H - 1) - 4y sech“t] dt ’
-mN/w
= . |2mNS - _ N
= e[(ﬂ (H-1) - 8y tanh[(u]] y (6.11)
and so condition (H) is satisfied if we have
_ 1 4 8w tanh(nN/w) (v} = 8w v (g
He =1+ ———ﬁ;n—j—~L [6 >N 5 (for N 1large). (6.12)

We next compute the Melnikov function M(d )(to) from (5.11). From
Y

Section 4 and (3.1) we have

M(tg) =:J§ 2mV2(H - 1) sech[??} sinw tg . (6.13)
w

Using F = v2/2 - COS ¢, y]f] £ 0, and Kzfz = -¥v in (5.11), the second

term of M(&,y)(to) is

- w

[
€

Thus we obtain
(i)
e 1 )
Mis,y)(to) -zwz[zn/ztn 7Y sech|5| sin o ty + BY]
def M(H) sinw tq + 8y/wa (6.14)

To compute our verification of the hypotheses of Theorem 5.5, we note

that, for Mé(to) to have simple zeros, we require
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2
M(Hc)> 8Y/w",

2
or R 8y > def ¢\2 (6.15)
m° sech®(nw/2) ’

while for satisfaction of condition (H) we have
Ho- 1= 8wy def . y (6.16)
c 2nM8 T Y2 N§ ’

We also have the relationship

N=Ne)=1L +2a2n(8/s/Hc -1 (6.17)

from (5.12), where the remaining constants in M(é Y)(to) are accumulated into

g. From (6.16) and (6.17) we have
(Hc -1 L+ 2 sm(;s/e‘/Hc -1)] = Czylé . (6.18)

To satisfy (6.15) and (6.18) simultaneously we pick y and & to be of

the same order in ¢, say y=€"Y, § =e"T; u > 0. Then (6.18) may be

rewritten as
(Hc - 1+ C3 ln(B/s/Hc -1)] = C4 . (6.19)

A simple exercise in calculus shows that,for ¢ small (6.19) has a unique

solution Hc near Hc = 1 and for any fixed o, 0 < 0 < 2,

H, - 1> €% (6.20)

for small e; "how small" depends on how close O is to O.

(Proof. Rewrite (6.19) as




1/C3 e-C4/G3X .

eVX = ge Qox)

where x = HC - 1. By considering the graphs of y = e/x and y = ¢(x)
one sees that for small ¢, (6.19) has a unique small solution x(e) »~ 0O
as ¢ -+ 0. Moreover, as ¢ vanishes to all orders at x = 0, ¢(x) f.xp
for p>1/2 and x small. It follows that x(c) 1is larger than the

2/ (2p-1)

solution of e/x = xP for small ¢; i.e. x(e) > for small e.

Let o =2/(2p-1).8)

Picking o < 2u, (6.15) is now easily satisfied, since
2u—2
Ho = 1> c0e° > ¢y (6.21)

for ¢ sufficiently small. For example, we can take p = 1/2, since then

3/2) and the O(ez)

the damping perturbations e(e¥s), e(e"y) appear at O(e
terms ignored in our computations do not affect the results. Thus, we have

proved:

6.1 Theorem. The system (6.1) has a horseshoe in its dynamics provided

= /2 % and e sufficiently small.

we choose ey Y and €§ = ¢
O0f course it is possible to vary the orders of & and y with some

latitude and still maintain the hypotheses. Specifically, 6.1 remains valid

if we choose vy = ¢Vy and 6=e“'§,0iugv < 1, v#0.
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Conclusions

In this paper we have developed applicable techniques for establishing
the existence of chaotic dynamics in the sense of the presence of a horse-
shoe for both Hamiltonian and non-Hamiltonian perturbations of systems with
two degrees of freedom containing homoclinic orbits and periodic orbits.

Hhile horseshoes are not strange attractors, they are often visible and
behave Tike them in numerical experiments (perhaps due to small background
noise); cf. Franks [1981]. Arnold diffusion is a higher dimensional manifes-
tation of the same phenomenon and is certainly seen in many examples (see,
for instance Lieberman [1980]).

For conservative perturbations the method is a straightforward combina-
tion of a classical reduction scheme with a method of Melnikov. For non-
conservative perturbations a delicate energy balance argument is needed to
ensure that at least one horseshoe survives near the energy balance point.
Near other points there is a "ghost horseshoe" which decays because of energy
drift. If the dissipation terms all contribute to energy loss then, while
no invariant set remains near the homoclinic orbit (since H decreases on
all orbits), the manifolds ws(cgfa) wu(cgﬁs) continue to intersect and
the resulting ghost horseshoes would give rise to complicated dynamics on
finite time intervals, as orbits move through the energy band.

The results are shown to apply to typical perturbations of the pendulum-
oscillator system, thereby showing that this ciassical example has complex

dynamics and, in particular, is non-integrable.

- © e e e s = s
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Appendix A. A Modified Averaging Theorem

For the basic averaging theorem see Hale [1969]. Here we consider a

] system of the form

f(x) + eg(x,y,t),

P
n

(A.1)
eh(x,y,t), 0<e=<<l,

<.
1

where x = x(t) and y = y(t) are the fast and slow variables, the functions

f, g, h are sufficiently smooth and the latter two are T-periodic in t.

. - A1. Proposition. There exists a near identity time dependent change of co-

ordinates (x,y) - (x,z) under which (A.1) becomes

% = f(x) + eg(x,2,t) + 0(e?)
- (A.2)
z = eh{x,z) + 0(e?) ,
— 1 (T
where h = T J h(x,y,t) dt is the t-average of h.
0
Proof. As in the usual averaging theorem, we set
i y =z + eu(x,z,t) . (A.3)
}; Differentiating (A.3) with respect to time, we obtain
e y=2z+eu+ ebux + D uz, vhere () = 3/3t. (A.4)
i
28 Using (A.1), (A.2) and (A.4):
b i
(Id - eDzu)i =y-¢eu- sDxui = g[h(x,z + eu,t)
(A.5)

-
L
3
‘.’

- eu(x,z + eu,t) - D uf(x)]




We can write

h(x,z,t) = h(x,z) + E(x,z,t) R (A.6)

-~

where h 1is T-periodic in t and for zero mean. From (A.5-6) we have

(14 - €D,u)z = e[Rlx,2) + h(x,2,t) - U{x,2,t) - D, u(x,z,t)f(x)]

+ 0(e?) o (A.7)
Thus, if we set
a e+ DUf(x) = hix.z,t), (A.8)
L we have, from (A.7)
2 = eh(x,z) + 0(c?) (A.9)
and, using (A.2) in (A.1)
g x = £(x) + eg(x,z,t) + 0(e?) (A.10) l

It remains only to check that the linear partial differential equation

(A.8) admits a solution u = u(x,z,t). However, (A.8) has the solution

t.
u(x(t),z,t) = u(x,2,0) +J h(x(s),z,s) ds (A.11)
0
; where x(t) satisfies x(0) = x and x = f(x). ®
5@ Most of the usual averaging results go through; in particular, solu-
, tions (x(t), z(t)) of (A.2) remain within 0(c2) of those of (A.1) for times
v of 0(1/¢). Since we wish only to integrate for times of O(N) = 0(an(1/¢))

(egs. (5.10)(5.12)) the averaged equation may be used in computations. Note

Y

that the transformation u(x,z,t) 1is not in general T-periodic, since solu-

tions of (A.8) depend upon the (nonperiodic) flow x{(t) of x = f(x). One

TN N e Y

must therefore be careful in inferring the existence of T-periodic solutions

k.

2 of (A.1) corresponding to fixed points of (A.2), as in the usual averaging
-

el theorem.
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Appendix B. The Iteration Number: Proof of Lemma 5.4

In this appendix we derive a relationship between N, the number of

y
.' 6 8]
jterates of the Poincaré map Peo0 necessary to guarantee that F = (Peoo)N
has a horseshoe, and ¢, the perturbation parameter. Henceforth we drop
0

the sub- and superscripts on PsOD'

s o e e e

Let x be the (perturbed) saddle point of P and y a transverse
homoclinic point lying outside a ball Bu(x) of radius u about x. The
Melnikov theory tells us that the maximum distance between the manifoldsnear

y is

d o, = EKMH) + 0(e?) (8.1)

where M(Hc) = sup M(to) and K; is a constant.
tOE[O,T)

We next need a basic result from dynamical systems theory, the "lambda-
lemma" (Palis [1969], Newhouse [1980]), which enables us to make our choices

of horizontal and vertical strips in the horseshoe map more precise:

B.1 Lemma. Let x be a hyperbolic saddle point of a c’ diffeomorphism
P and D C w“(x) an open disc in its unstable manifold. Let A be a disc
of dim(W!(x)) meeting WS(x) transversely at a point y. Then u  P"(a)

n>0
contains discs arbitrarily C" close to DM.

This result implies that, if y € WY(x) @ WS(x) is a transverse homo-
clinic point, then W"%(x) and WS(x) accumulate on themselves, giving us

the structure of Figure B.1. We assume that the map is orientation preser-

ving, as are the Poincaré maps occurring in the application of this paper.
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We pick a rectangle R bounded by pieces of JS(x), w“(x) as shown.

Since u is fixed independent of ¢, there are fixed integers LI’ L

L -L 2
such that P "(R), P
L L

2Ry B,(x) and the 'height' and 'width' of
p ](R) and P- 2(R) are eK3M(HC), eK4M(HC) respectively. Once in Bu the
dynamics is dominated by the linearized map, which, working in suitable co-
ordinates, we can take to be
DP = F 0, <1 < IA] .

0 )

-(L2+N2) L]+N]
P (Ry np (R) as shown, we

require further iteration numbers N, = Ni(e) such that

To obtain the horseshoe structure

My
[%J eKM(H,) = Ken |

-N
W2
{—J eKgM(H,) = Kb -

Y
or N.(€) = aan(g;/eM(H)) 1 =1, 2 (B.2)
a = 1/en(y/X),
Thus the total number of iterates is N = Ly * L2 + Ny + Ny, or
N = N(e) = L + 2uen(B/eM(K.)). (B.3)
where L 1is a fixed integer and o, B are constants.
When 8§ # 0 M(Hc) should be replaced by MG(HC) and A, v by
A+ K7G, Y + K85, leading to
Ni(€,8) = a(8)an(By/eMs(H ) (8.4)
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1/4n

(v + K76
where a(8)

X ¥ Kgb

( KA -
1/2." X + [J_Z__K_ai]s + 0(52)]

A
L A

a + Kgs + 0(s) , (B.5)

and Kg is a positive constant. Thus MN(e,8) > M(e) 1in general. However,

in our application we take & of order €%, u > 0 (for example 51/2) and

thus €6 = e]+”§, say, and the dependence of N on & 1is weaker than its

dependence on ¢, and hence can effectively be ignored in thelimit ¢ + 0.
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